The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max.

نویسندگان

  • R Hopewell
  • E B Ziff
چکیده

Heterodimerization of Max with the nuclear oncoprotein Myc and the differentiation-associated proteins Mad and Mxi1 enables these factors to bind E-box sites in DNA and control genes implicated in cell proliferation and differentiation. We show that in the PC12 pheochromocytoma tumor cell line, functional Max protein is not expressed because of the synthesis of a mutant max transcript. This transcript encodes a protein incapable of homo- or heterodimerization. Furthermore, the mutant Max protein, unlike wild-type Max, is incapable of repressing transcription from an E-box element. Synthesis of mutant max transcripts appears to be due to a homozygous chromosomal alteration within the max gene. Reintroduction of max into PC12 cells results in repression of E-box-dependent transcription and a reduction in growth rate, which may explain the loss of Max expression either during the growth of the pheochromocytoma or in subsequent passage of the PC12 cell line in vitro. Finally, the ability of these cells to divide, differentiate, and apoptose in the absence of Max demonstrates for the first time that these processes can occur via Max- and possibly Myc-independent mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cell proliferation and differentiation by Myc.

Myc is a nuclear phosphoprotein which controls cellular proliferation, most likely by regulating gene activity. The finding that the neuronal model cell line PC12 lacks the Myc DNA binding partner, the Max protein, and the demonstration that Myc is a repressor of gene activity as well as a transactivator, lead to models for Myc action in regulating cell growth.

متن کامل

Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli

Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....

متن کامل

Myc and Max: molecular evolution of a family of proto-oncogene products and their dimerization partner.

The myc gene family encodes a group of transcription factors that regulate cell proliferation and differentiation. These genes are widely studied because of their importance as proto-oncogenes. Phylogenetic analyses are described here for 45 Myc protein sequences representing c-, N-, L-, S-, and B-myc genes. A gene duplication early in vertebrate evolution produced the c-myc lineage and another...

متن کامل

Genetic elements regulating HES-1 induction in Wnt-1-transformed PC12 cells.

PC12 cells differentiate in response to nerve growth factor from a chromaffin cell to a sympathetic neuronal phenotype. Wnt-1 is a secreted signaling factor required for development of mammalian midbrain and cerebellum. PC12 cells transformed by Wnt-1 fail to express several differentiation-specific genes in response to nerve growth factor. We have previously shown that HES-1, a negative regula...

متن کامل

Stopping MYC in its tracks

a transcriptional regulator that in order to function has to dimerize with a specific partner protein, MAX. The MYC-MAX dimer regulates the expression of thousands of genes involved in fundamental cellular processes including growth, proliferation, differentiation, biosynthesis, energy metabolism, and apoptosis [1-3]. The discovery that MYC becomes overexpressed as a result of chromosomal rearr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 1995